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ABSTRACT

We propose a novel 3D motion estimation approach 
integrating the Robust Point Matching (RPM) and meshless 
deformable models. In our study, we first use the Gabor 
filters to generate phase maps of Short Axis (SA) and Long 
Axis (LA) tagged MRI sequences. Then we use the RPM to 
track the heart motion sparsely at intersections of tag grids 
in these image sequences, using both intensity gradient and 
phase information. Next, the new meshless deformable 
model is used to recover the dense 3D motion of the 
myocardium temporally during the cardiac cycle. The 
deformable model is driven by external forces computed at 
tag intersections based on the RPM motion tracking and 
keeps a consistent but flexible topology during the 
deformation using internal constraint forces calculated by 
the Moving Least Squares (MLS) method. The deformable 
model recovers the global deformation of the LV such as 
rotation, contraction and twisting by integrating global 
deformation parameters over the volume. The new model 
avoids the singularity problem of mesh-based deformable 
models and is capable of tracking deformation efficiently 
with the sparse external forces derived from tagging line 
intersections. We test the performance of the new approach 
on in vivo heart data of healthy subjects and patients. The 
experimental results show that our new method can fully 
recover the myocardium motion and strain in 3D. 
Index Terms— Motion measurement, tracking, modeling. 

1. INTRODUCTION 

Tagged Magnetic Resonance Imaging (tMRI) [1] is a non-
invasive way to track the in vivo myocardial motion during 
cardiac cycles. tMRI data is acquired by creating regional 
magnetic perturbations in the object, which are displayed in 
MR image as stripe-like darker tag structures embedded in 
relatively brighter myocardium. Tags are material properties 
so that they deform as the heart contracts and relaxes during 
the cardiac cycle. Myocardial motion in one direction can be 
quantitatively measured by tracking the deformation of tags 
that are initially in the perpendicular direction. For heart 
study, usually tags were created in three sets of mutually 

orthogonal tag planes, two of which are perpendicular to the 
short axis (SA) image plane and one to the long axis (LA), 
to form 2D tag grids in the myocardium for both views of 
the heart. Using appropriate mathematical approaches, we 
can retrieve 2D displacement fields in these image planes by 
tracking the deformation of tag grids. Compared to the 
conventional MRI, which can only capture the global 
cardiac function measurements such as the ventricular 
volumes, tagged MRI can be utilized to recover local heart 
wall motion within the myocardium and derive critical 
clinical information such as strain.  

Previously, a motion tracking method based on the use 
of Gabor filters bank and the RPM has been proposed [2] 
[3] to capture the myocardial motion in tMRI. The major 
limitation of the method is that it is a 2D approach. In 
addition, the FEM-based reconstruction of the dense 
displacement field has the problem of element degeneration.  

Deformable models have been widely used for the 3D 
cardiac motion reconstruction from tagged MRI. Park et al. 
[4] [5] [6], Haber et al. [7], and Park et al. [8] [9] designed 
deformable models with global parameter functions to 
recover the LV and right ventricle (RV) motion. Spline 
models have also been developed to describe the motion of 
LV in [10]. These models are mesh-based and their 
deformation is computed using Finite Element Method 
(FEM). The mesh structure, however, may limit the 
performance of deformable models because the lack of 
topology flexibility and the generation of singularity during 
large deformation. Usually, mesh-based deformable models 
require re-meshing during the deformation, but this 
procedure is tedious and does not always guarantee 
returning a mesh with the optimal structure. Meshfree 
particle methods, which are also known as meshless 
methods, were first introduced to deal with the modeling of 
objects with cracks and surface discontinuities [11] and 
have been later applied in graphical motion simulation [12] 
[13] [14]. The meshless method simulates the motion of an 
object by computing the motion at a set of discrete points 
inside the object boundary with Smoothed Particle 
Hydrodynamics (SPH) method [15]. The structure of the 
object is sustained during the deformation using the internal 
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constraint calculated by the Moving Least Square method 
[16].  

To avoid mesh element degeneration and to efficiently 
address the problem of large deformation tracking, we 
propose a new 3D motion tracking method integrating the 
RPM, the meshless method, and the deformable model [17]. 
We use the new method for 3D cardiac motion 
reconstruction from tMRI data. In the 3D motion 
reconstruction procedure, motion at tag intersections in SA 
and LA are first tracked using the RPM and Gabor filters. 
Then we construct a meshless deformable model composed 
of particles. The tag intersections are used as control points 
of the model, where external forces are calculated based on 
displacement and redistributed to particles throughout the 
object. The internal force at each particle is computed using 
the MLS method to simulate the elasticity of the 
myocardium. The model evolves in 3D following the 
Lagrange equation, driven by both the external and internal 
forces.

We demonstrated the strength of the new approach for 
3D cardiac motion reconstruction from tMRI by testing its 
performance on in vivo cardiac images. The experimental 
results showed a good convergence between our dense 
motion reconstruction and the ground truth tMRI. 
Moreover, the analysis revealed the difference between 
normal and pathological cardiac motion. 

Our paper is organized as follows: section 2 introduces 
the framework of the new motion tracking method; section 
3 presents the deformation results on a numerical phantom 
and then elaborates its medical application on tagged MRI 
analysis; and in section 4 we draw the conclusions.

2. METHODS 

2.1. Sparse Motion Tracking 

The motion tracking process starts with the segmentation of 
the myocardium around LV in tagged MR images. We use 
the method developed in [18] for the delineation of 
myocardial boundaries. A previously constructed 3D shell 
model of heart is registered to the image space using 
landmark points on the myocardial boundaries. The region 
within the intersection of the shell model and the 2D image 
plane is assumed as the myocardium in 2D tMRI. 

Given a cardiac tMRI sequence and the segmentation of 
the myocardium around the LV in all frames, we start the 
motion tracking by using the Gabor filters bank to generate 
two phase-maps for each frame, corresponding to vertical or 
horizontal tags, respectively. Tag intersections can be easily 
located by finding local minima in the summation of phase 
maps. Only intersections that are within the myocardial 
region will be used in the following steps.  

Given two sets of tag intersections X and Y in two 
different frames of the same image sequence, we can track 
the displacement between intersections in these two frames 

by building a correspondence matrix Z  to correlate X and 
Y. According to the definition of Thin Plate Splines (TPS), 
Z  and the displacement function  can be 
computed simultaneously by the minimization of the thin 
plate spline energy: 
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To find Z  and f that minimize , we separate the 
affine and non-affine space using a QR  decomposition of 
X, in which  
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where  and  are M by 3 and M by M-3 orthogonal 
matrices, respectively. R is an upper triangular matrix that 
depicts the orientation of X. Allowing that 
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equation (1) in the following form:  
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where 2Qc  is the non-affine deformation of X, d is the 
affine translation matrix. We can solve d and c in 
consequential order by letting the derivative of the right side 
of the equation (3) to be 0. We then compute the 
displacement function f using c and d, and the solution for 
Z  is easy given f. Note that this process may overestimate 
the non-affine displacement and cause an isotropic-
structured X to flip after the deformation. To avoid that, we 
set a lose constraint on d to make it close to an identity 
matrix in order to reject dramatic global translation, and we 
set an upper threshold on the absolute value of elements in c
to prevent the flipping.  

2.2. Meshless Deformable Model 

The TPS-based RPM can provide us point-to-point 
correspondence between tag intersections throughout the 
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cardiac cycle. However, such correspondence only exists in 
a 2D image plane and it is sparse compared to the image 
resolution. To fully extend our method into 3D, we integrate 
the idea of meshless methods into 3D deformable models. 
      In the new meshless deformable model, the object of 
interest is discretized into particles without a connecting 
mesh. Each particle and its neighboring particles can be 
viewed as a phyxel. Physical properties, such as mass, are 
distributed in the phyxel using a kernel function. The 
motion pattern shared by all particles can be described as 
global deformation, such as rigid transformation, scaling 
and twisting. We interpret the model-centered coordinates 
in a polar coordinate system or a cylindrical coordinate 
system, which has a few parameters indicating the global 
features of the model. Here we use the polar coordinates as 
our example. The model-centered coordinates of a particle 
can be written in the polar coordinates ( , , ).
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usually we define 
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of the LV,  is horizontal, starting and ending at 
the inferior junction of LV and RV. 

The model deforms following the Lagrange equation: 
intffx extD           (4) 

where the damping matrix D  is the identity matrix in our 
case. The external forces are applied at tag intersections and 
redistributed over the model.  
       The external forces on each particles are transformed to 
the forces on global parameters 0 1 2 3( , , , , )a a a a , where 

 represents rotation. The forces on global parameters are 
integrated over the whole object to compute the velocity of 
the global parameters. At each time step, the global 
deformation of the model is recalculated using updated 
global parameters.  
       The internal forces are calculated locally using MLS. 
MLS minimizes the weighted difference between the 
observed displacement and the displacement approximated 
by its neighbors with first order accuracy: 
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computed using the kernel function. Components of the 
displacement gradient at node i can be computed as (for 
example, the x component): 
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where ,v , and  are the volume of the phyxel, the 
stress, and the strain, respectively. The force at particle j
caused by deformation at particle i can be computed by 

iuiij Uvf
j

   (8) 

The internal force at a particle i is the sum of counter 
forces at particle j in its neighborhood (phyxel). 

j ji ff |int                (9) 

3. EXPERIMENTS 

We tested the method on in vivo tMRI heart data. Tagged 
MR images were obtained from a Siemens Trio 3T MR 
scanner with 2D grid tagging. The 3D tagged MR image set 
we used consisted of a stack of 8 SA image sequence 
equally spaced from the base to the apex of LV, and 3 LA 
images, which are parallel to the long axis (LA) and with 60 
degrees angles in between, as shown in Figure 1.  The tag 
intersections in 2D images are tracked using RPM.  The 
point tracking results are shown in Figure 2. 

Figure 1: LV tMRI 
setting: 3 LA images 
and 8 SA images.

Figure 2: The intersections of grid 
tagging lines tracked by RPM.

The SA and LA images are registered using the spatial 
information in the DICOM header file. The endo- and epi- 
surfaces of the myocardium around the LV are delineated 
using a boosting method developed in [17]. Then the 3D 
model is registered to the image domain using landmark 
points on the contour of the heart. The tag intersections are 
tracked using the RPM to recreate displacement in 2D 
images as described in detail in [2] [3]. The 3D 
reconstruction results of a normal heart and a hypertrophic 
heart are shown in Figure 4 and Figure 5, respectively. We 
validated the method by using the tracked motion to 
compute myocardial strain, and compared the result against 
the ground truth on a numerical phantom. The RMS error of 
the method as well as other motion tracking methods, 
including HARP, are shown in Figure 3. 

4. CONCLUSIONS 

We developed a novel 3D myocardium motion tracking 
method for in vivo myocardial strain analysis. The method 
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can track 3D motion with high accuracy, using a meshless 
deformable model that can handle the complex shape and 
motion of the myocardium. The TPS-based motion tracking 
at tag intersections has been used to provide external forces 
for the deformable model, which speeds up the overall 
timing performance and sets an implicit global motion 
constraint for the deformable model. Internal forces at local 
particles are calculated using the MLS to avoid the 
singularity problem of mesh-based deformable models. In 
the future, we will apply the method to more heart data in 
order to quantitatively measure the difference between 
healthy and pathological hearts caused by heart disease.  
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